Quantum Tunneling
  • Home
  • Physics 12, SPH4U
    • Module 1: Dynamics >
      • Lesson 1: Motion and Motion Graphs
      • Lesson 2: Equations of Motion
      • Lesson 3: Displacement in Two Dimensions
      • Lesson 4: Velocity and Acceleration in Two Dimensions
      • Lesson 5: Projectile Motion
      • Lesson 6: Relative Motion
      • Lesson 7: Forces and Free Body Diagrams
      • Lesson 8: Newton's Laws of Motion
      • Lesson 9: Applying Newton's Laws of Motion
      • Lesson 10: Forces of Friction
      • Lesson 11: Inertial and Non Inertial Frames of Reference
      • Lesson 12: Centripetal Acceleration
      • Lesson 13: Centripetal Force
      • Module 1 Assessment
    • Module 2: E and P >
      • Lesson 1: Work Done by a Constant Force
      • Lesson 2: Kinetic Energy and Work Energy Theorem
      • Lesson 3: Gravitational Potential Energy
      • Lesson 4: The Law of Conservation of Energy
      • Lesson 5: Elastic Potential Energy and SHM
      • Lesson 6: Springs and Conservation of Energy
      • Lesson 7: Momentum and Impulse
      • Lesson 8: Conservation of Momentum in One Dimension
      • Lesson 9: Collisions
      • Lesson 10: Head-on Elastic Collisions
      • Module 2 Assessment
    • Module 3: Fields >
      • Lesson 1: Newtonian Gravitation
      • Lesson 2: Orbits
      • Lesson 3: Electric Force
      • Lesson 4: Electric Fields
      • Lesson 5: The Milikan Oil Drop Experiment
      • Lesson 6: Magnets
      • Lesson 7: Magnetic Force on Moving Charges
      • Lesson 8: Motion of Charged Particles in Magnetic Fields
      • Module 3 Assessment
    • Module 4: Light >
      • Lesson 1: Properties of Waves and Light
      • Lesson 2: Refraction and Total Internal Reflection
      • Lesson 3: Diffraction and Interference of Water Waves
      • Lesson 4: Interference of Light Waves
      • Lesson 5: Electromagnetic Radiation
      • Module 4 Assessment
    • Module 5: Revolution >
      • Lesson 1: The Special Theory of Relativity
      • Lesson 2: Time Dilation
      • Lesson 3: Consequences of Special Relativity
      • Lesson 4: Quantum Theory
      • Lesson 5: Photons
      • Lesson 6: Matter Waves
      • Module 5 Assessment

Lesson 3: Chemical Bonds

Overview:

In this lesson we will learn more about the invisible glue that holds atoms and molecules together. There will be an emphasis on electronegativity and how we can use the differences of the electronegativity values of each atom to determine the type of bond.

Curriculum Expectations:

Overall Expectations:
B2. Investigate physical and chemical properties of elements and compounds, and use various methods to visually represent them.
​B3. Demonstrate an understanding of periodic trends in the periodic table and how elements combine to form chemical bonds.

Specific Expectations:
B2.1 Use appropriate terminology related to chemical trends and chemical bonding, including but not limited to: electronegativity, and electron affinity.
B2.3 Use an inquiry process to investigate the chemical reactions of elements (e.g., metals, non-metals) with other substances (e.g., oxygen, acids, water), and produce an activity series using the resulting data.
B2.4 Draw Lewis structures to represent the bonds in ionic and molecular compounds.
B2.5 Predict the nature of a bond (e.g., non-polar covalent, polar covalent, ionic), using electronegativity values of atoms.
B3.4 Explain the differences between the formation of ionic bonds and the formation of covalent bonds.


Success Criteria:

Time Allocation:  3 hours


Learning Activities:

Read Nelson 2.1 - Ionic Compounds
Read Nelson 2.2 - Molecular Elements and Compounds
Read Nelson 2.3 - Chemical Bonding and Electronegativity

Ionic Bonding
This interactive activity from ChemThink discusses ionic bonding—a type of chemical bond formed between two ions with opposite charges. Investigate how the transfer of electrons between atoms creates ions and how the mutual attraction of these charged particles forms ionic bonds. Also learn about trends in the periodic table of elements, and explore how the structure of an ionic compound relates to its formula.
Picture
Covalent Bonding
​
This interactive activity from ChemThink describes covalent bonding—a type of chemical bond that involves the sharing of electrons. Investigate the attractive and repulsive forces that act on atomic particles and how the sharing of electrons can keep atoms together. See how two hydrogen atoms interact with each other to create a covalent bond. Learn about trends in the periodic table and how electrostatic potential energy determines the bond length. Also, learn about naming conventions for covalent compounds.
Follow the instructions closely as you move through this activity! There are some screens where you have to do something before you can move onto the following screen.
Picture

In the playlist below, video:

Task:

Solve questions 1, 2, 3, 4, 5, 6 and 7 from Nelson 2.1 Review on page 60.
Solve questions 1, 2, 4 and 5 from Nelson 2.2 Review on page 69.
Solve questions 1, 2, 3, 4, 5, 6 and 7 from Nelson 2.3 Review on page 73.


Reflect:


Additional Resources:


Lesson 2
module 1
Lesson 4
Powered by Create your own unique website with customizable templates.
  • Home
  • Physics 12, SPH4U
    • Module 1: Dynamics >
      • Lesson 1: Motion and Motion Graphs
      • Lesson 2: Equations of Motion
      • Lesson 3: Displacement in Two Dimensions
      • Lesson 4: Velocity and Acceleration in Two Dimensions
      • Lesson 5: Projectile Motion
      • Lesson 6: Relative Motion
      • Lesson 7: Forces and Free Body Diagrams
      • Lesson 8: Newton's Laws of Motion
      • Lesson 9: Applying Newton's Laws of Motion
      • Lesson 10: Forces of Friction
      • Lesson 11: Inertial and Non Inertial Frames of Reference
      • Lesson 12: Centripetal Acceleration
      • Lesson 13: Centripetal Force
      • Module 1 Assessment
    • Module 2: E and P >
      • Lesson 1: Work Done by a Constant Force
      • Lesson 2: Kinetic Energy and Work Energy Theorem
      • Lesson 3: Gravitational Potential Energy
      • Lesson 4: The Law of Conservation of Energy
      • Lesson 5: Elastic Potential Energy and SHM
      • Lesson 6: Springs and Conservation of Energy
      • Lesson 7: Momentum and Impulse
      • Lesson 8: Conservation of Momentum in One Dimension
      • Lesson 9: Collisions
      • Lesson 10: Head-on Elastic Collisions
      • Module 2 Assessment
    • Module 3: Fields >
      • Lesson 1: Newtonian Gravitation
      • Lesson 2: Orbits
      • Lesson 3: Electric Force
      • Lesson 4: Electric Fields
      • Lesson 5: The Milikan Oil Drop Experiment
      • Lesson 6: Magnets
      • Lesson 7: Magnetic Force on Moving Charges
      • Lesson 8: Motion of Charged Particles in Magnetic Fields
      • Module 3 Assessment
    • Module 4: Light >
      • Lesson 1: Properties of Waves and Light
      • Lesson 2: Refraction and Total Internal Reflection
      • Lesson 3: Diffraction and Interference of Water Waves
      • Lesson 4: Interference of Light Waves
      • Lesson 5: Electromagnetic Radiation
      • Module 4 Assessment
    • Module 5: Revolution >
      • Lesson 1: The Special Theory of Relativity
      • Lesson 2: Time Dilation
      • Lesson 3: Consequences of Special Relativity
      • Lesson 4: Quantum Theory
      • Lesson 5: Photons
      • Lesson 6: Matter Waves
      • Module 5 Assessment