Quantum Tunneling
  • Home
  • Physics 12, SPH4U
    • Module 1: Dynamics >
      • Lesson 1: Motion and Motion Graphs
      • Lesson 2: Equations of Motion
      • Lesson 3: Displacement in Two Dimensions
      • Lesson 4: Velocity and Acceleration in Two Dimensions
      • Lesson 5: Projectile Motion
      • Lesson 6: Relative Motion
      • Lesson 7: Forces and Free Body Diagrams
      • Lesson 8: Newton's Laws of Motion
      • Lesson 9: Applying Newton's Laws of Motion
      • Lesson 10: Forces of Friction
      • Lesson 11: Inertial and Non Inertial Frames of Reference
      • Lesson 12: Centripetal Acceleration
      • Lesson 13: Centripetal Force
      • Module 1 Assessment
    • Module 2: E and P >
      • Lesson 1: Work Done by a Constant Force
      • Lesson 2: Kinetic Energy and Work Energy Theorem
      • Lesson 3: Gravitational Potential Energy
      • Lesson 4: The Law of Conservation of Energy
      • Lesson 5: Elastic Potential Energy and SHM
      • Lesson 6: Springs and Conservation of Energy
      • Lesson 7: Momentum and Impulse
      • Lesson 8: Conservation of Momentum in One Dimension
      • Lesson 9: Collisions
      • Lesson 10: Head-on Elastic Collisions
      • Module 2 Assessment
    • Module 3: Fields >
      • Lesson 1: Newtonian Gravitation
      • Lesson 2: Orbits
      • Lesson 3: Electric Force
      • Lesson 4: Electric Fields
      • Lesson 5: The Milikan Oil Drop Experiment
      • Lesson 6: Magnets
      • Lesson 7: Magnetic Force on Moving Charges
      • Lesson 8: Motion of Charged Particles in Magnetic Fields
      • Module 3 Assessment
    • Module 4: Light >
      • Lesson 1: Properties of Waves and Light
      • Lesson 2: Refraction and Total Internal Reflection
      • Lesson 3: Diffraction and Interference of Water Waves
      • Lesson 4: Interference of Light Waves
      • Lesson 5: Electromagnetic Radiation
      • Module 4 Assessment
    • Module 5: Revolution >
      • Lesson 1: The Special Theory of Relativity
      • Lesson 2: Time Dilation
      • Lesson 3: Consequences of Special Relativity
      • Lesson 4: Quantum Theory
      • Lesson 5: Photons
      • Lesson 6: Matter Waves
      • Module 5 Assessment

Module 1: Matter, Chemical Trends, and Chemical Bonding

Overview:

In this unit, you will be introduced to the alphabet of chemistry: the atoms. Unlike the English alphabet, in chemistry we will have many atoms which will be harder to memorize than the simple ABC's song.  However, the atoms can be organized effectively into what is known as the periodic table. You will analyze trends found within the periodic table then explore how different elements combine to form chemical bonds.

This unit is an excellent overview of how science works, expanding and developing theory with the support of ingenious ideas and experimental evidence. As you progress through the unit, keep thinking about the overall development of modern theory related to the nature of the atom. As we search to explain existing phenomenon, theories change and grow based on internal consistency and experimental findings. You should finish the unit with a clear understanding of the development of modern chemistry and scientific theory in general.

Overall Curriculum Expectations:

By the end of this course, students will:
B1. analyze the properties of commonly used chemical substances and their effects on human health and the environment, and propose ways to lessen their impact;
B2. investigate physical and chemical properties of elements and compounds, and use various methods to visually represent them;
B3. demonstrate an understanding of periodic trends in the periodic table and how elements combine to form chemical bonds.

Content:

Please click on the buttons below in increasing order, starting with Lesson 1: The Nature of Atoms.
Lesson 1: The Nature of Atoms
Lesson 2: The periodic table
Lesson 3: Chemical Bonding
Lesson 4: iupac nomenclature system
Lesson 5: Physical properties of compounds
Powered by Create your own unique website with customizable templates.
  • Home
  • Physics 12, SPH4U
    • Module 1: Dynamics >
      • Lesson 1: Motion and Motion Graphs
      • Lesson 2: Equations of Motion
      • Lesson 3: Displacement in Two Dimensions
      • Lesson 4: Velocity and Acceleration in Two Dimensions
      • Lesson 5: Projectile Motion
      • Lesson 6: Relative Motion
      • Lesson 7: Forces and Free Body Diagrams
      • Lesson 8: Newton's Laws of Motion
      • Lesson 9: Applying Newton's Laws of Motion
      • Lesson 10: Forces of Friction
      • Lesson 11: Inertial and Non Inertial Frames of Reference
      • Lesson 12: Centripetal Acceleration
      • Lesson 13: Centripetal Force
      • Module 1 Assessment
    • Module 2: E and P >
      • Lesson 1: Work Done by a Constant Force
      • Lesson 2: Kinetic Energy and Work Energy Theorem
      • Lesson 3: Gravitational Potential Energy
      • Lesson 4: The Law of Conservation of Energy
      • Lesson 5: Elastic Potential Energy and SHM
      • Lesson 6: Springs and Conservation of Energy
      • Lesson 7: Momentum and Impulse
      • Lesson 8: Conservation of Momentum in One Dimension
      • Lesson 9: Collisions
      • Lesson 10: Head-on Elastic Collisions
      • Module 2 Assessment
    • Module 3: Fields >
      • Lesson 1: Newtonian Gravitation
      • Lesson 2: Orbits
      • Lesson 3: Electric Force
      • Lesson 4: Electric Fields
      • Lesson 5: The Milikan Oil Drop Experiment
      • Lesson 6: Magnets
      • Lesson 7: Magnetic Force on Moving Charges
      • Lesson 8: Motion of Charged Particles in Magnetic Fields
      • Module 3 Assessment
    • Module 4: Light >
      • Lesson 1: Properties of Waves and Light
      • Lesson 2: Refraction and Total Internal Reflection
      • Lesson 3: Diffraction and Interference of Water Waves
      • Lesson 4: Interference of Light Waves
      • Lesson 5: Electromagnetic Radiation
      • Module 4 Assessment
    • Module 5: Revolution >
      • Lesson 1: The Special Theory of Relativity
      • Lesson 2: Time Dilation
      • Lesson 3: Consequences of Special Relativity
      • Lesson 4: Quantum Theory
      • Lesson 5: Photons
      • Lesson 6: Matter Waves
      • Module 5 Assessment