Quantum Tunneling
  • Home
  • Physics 12, SPH4U
    • Module 1: Dynamics >
      • Lesson 1: Motion and Motion Graphs
      • Lesson 2: Equations of Motion
      • Lesson 3: Displacement in Two Dimensions
      • Lesson 4: Velocity and Acceleration in Two Dimensions
      • Lesson 5: Projectile Motion
      • Lesson 6: Relative Motion
      • Lesson 7: Forces and Free Body Diagrams
      • Lesson 8: Newton's Laws of Motion
      • Lesson 9: Applying Newton's Laws of Motion
      • Lesson 10: Forces of Friction
      • Lesson 11: Inertial and Non Inertial Frames of Reference
      • Lesson 12: Centripetal Acceleration
      • Lesson 13: Centripetal Force
      • Module 1 Assessment
    • Module 2: E and P >
      • Lesson 1: Work Done by a Constant Force
      • Lesson 2: Kinetic Energy and Work Energy Theorem
      • Lesson 3: Gravitational Potential Energy
      • Lesson 4: The Law of Conservation of Energy
      • Lesson 5: Elastic Potential Energy and SHM
      • Lesson 6: Springs and Conservation of Energy
      • Lesson 7: Momentum and Impulse
      • Lesson 8: Conservation of Momentum in One Dimension
      • Lesson 9: Collisions
      • Lesson 10: Head-on Elastic Collisions
      • Module 2 Assessment
    • Module 3: Fields >
      • Lesson 1: Newtonian Gravitation
      • Lesson 2: Orbits
      • Lesson 3: Electric Force
      • Lesson 4: Electric Fields
      • Lesson 5: The Milikan Oil Drop Experiment
      • Lesson 6: Magnets
      • Lesson 7: Magnetic Force on Moving Charges
      • Lesson 8: Motion of Charged Particles in Magnetic Fields
      • Module 3 Assessment
    • Module 4: Light >
      • Lesson 1: Properties of Waves and Light
      • Lesson 2: Refraction and Total Internal Reflection
      • Lesson 3: Diffraction and Interference of Water Waves
      • Lesson 4: Interference of Light Waves
      • Lesson 5: Electromagnetic Radiation
      • Module 4 Assessment
    • Module 5: Revolution >
      • Lesson 1: The Special Theory of Relativity
      • Lesson 2: Time Dilation
      • Lesson 3: Consequences of Special Relativity
      • Lesson 4: Quantum Theory
      • Lesson 5: Photons
      • Lesson 6: Matter Waves
      • Module 5 Assessment

Module 2 Assessment

Overview:

This will be your second unit test, refer to the curriculum expectations as to what type of material to focus on. 

Curriculum Expectations:

Overall Expectations:
C1. Analyze, and propose ways to improve, technologies or procedures that apply principles related to energy and momentum, and assess the social and environmental impact of these technologies or procedures.

C2. Investigate, in qualitative and quantitative terms, through laboratory inquiry or computer simulation, the relationship between the laws of conservation of energy and conservation of momentum, and solve related problems.

C3. Demonstrate an understanding of work, energy, momentum, and the laws of conservation of energy and conservation of momentum, in one and two dimensions.

Specific Expectations:
C1.1 Analyze, with reference to the principles of energy and momentum, and propose practical
ways to improve, a technology or procedure that applies these principles (e.g., fireworks, rocket propulsion, protective equipment, forensic analysis of vehicle crashes, demolition of buildings).

C2.1 Use appropriate terminology related to energy and momentum, including, but not limited to:
work, work–energy theorem, kinetic energy, gravitational potential energy, elastic potential energy, thermal energy, impulse, change in momentum–impulse theorem, elastic collision, and inelastic collision.

C2.2 Analyze, in qualitative and quantitative terms, the relationship between work and energy, using the work–energy theorem and the law of conservation of energy, and solve related problems in one and two dimensions.

C2.5 Analyze, in qualitative and quantitative terms, the relationships between mass, velocity, kinetic energy, momentum, and impulse for a system of objects moving in one and two dimensions (e.g., an off-centre collision of two masses on an air table, two carts recoiling from opposite ends of a released spring), and solve problems involving these concepts.

C2.6 Analyze, in qualitative and quantitative terms, elastic and inelastic collisions in one and two dimensions, using the laws of conservation of momentum and conservation of energy, and solve related problems.

C3.1 Describe and explain Hooke’s law, and explain the relationships between that law, work, and elastic potential energy in a system of objects.

C3.2 Describe and explain the simple harmonic motion (SHM) of an object, and explain the relationship between SHM, Hooke’s law, and uniform circular motion.

C3.3 Distinguish between elastic and inelastic collisions.

C3.4 Explain the implications of the laws of conservation of energy and conservation of momentum with reference to mechanical systems (e.g., damped harmonic motion in shock absorbers, the impossibility of developing a perpetual motion machine).

C3.5 Explain how the laws of conservation of energy and conservation of momentum were used to predict the existence and properties of the neutrino.

Time Allocation: 1 hour


Task:

Unit 2 test on moodle

Lesson 10
Home
Module 3
Powered by Create your own unique website with customizable templates.
  • Home
  • Physics 12, SPH4U
    • Module 1: Dynamics >
      • Lesson 1: Motion and Motion Graphs
      • Lesson 2: Equations of Motion
      • Lesson 3: Displacement in Two Dimensions
      • Lesson 4: Velocity and Acceleration in Two Dimensions
      • Lesson 5: Projectile Motion
      • Lesson 6: Relative Motion
      • Lesson 7: Forces and Free Body Diagrams
      • Lesson 8: Newton's Laws of Motion
      • Lesson 9: Applying Newton's Laws of Motion
      • Lesson 10: Forces of Friction
      • Lesson 11: Inertial and Non Inertial Frames of Reference
      • Lesson 12: Centripetal Acceleration
      • Lesson 13: Centripetal Force
      • Module 1 Assessment
    • Module 2: E and P >
      • Lesson 1: Work Done by a Constant Force
      • Lesson 2: Kinetic Energy and Work Energy Theorem
      • Lesson 3: Gravitational Potential Energy
      • Lesson 4: The Law of Conservation of Energy
      • Lesson 5: Elastic Potential Energy and SHM
      • Lesson 6: Springs and Conservation of Energy
      • Lesson 7: Momentum and Impulse
      • Lesson 8: Conservation of Momentum in One Dimension
      • Lesson 9: Collisions
      • Lesson 10: Head-on Elastic Collisions
      • Module 2 Assessment
    • Module 3: Fields >
      • Lesson 1: Newtonian Gravitation
      • Lesson 2: Orbits
      • Lesson 3: Electric Force
      • Lesson 4: Electric Fields
      • Lesson 5: The Milikan Oil Drop Experiment
      • Lesson 6: Magnets
      • Lesson 7: Magnetic Force on Moving Charges
      • Lesson 8: Motion of Charged Particles in Magnetic Fields
      • Module 3 Assessment
    • Module 4: Light >
      • Lesson 1: Properties of Waves and Light
      • Lesson 2: Refraction and Total Internal Reflection
      • Lesson 3: Diffraction and Interference of Water Waves
      • Lesson 4: Interference of Light Waves
      • Lesson 5: Electromagnetic Radiation
      • Module 4 Assessment
    • Module 5: Revolution >
      • Lesson 1: The Special Theory of Relativity
      • Lesson 2: Time Dilation
      • Lesson 3: Consequences of Special Relativity
      • Lesson 4: Quantum Theory
      • Lesson 5: Photons
      • Lesson 6: Matter Waves
      • Module 5 Assessment